Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Bacteria and fungi possess distinct physiological traits. Their macroecology is vital for ecosystem functioning such as carbon cycling. However, bacterial and fungal biogeography and underlying mechanisms remain elusive. In this study, we investigated bacterial versus fungal macroecology by integrating a microbial‐explicit model—CLM‐Microbe—with measured fungal (FBC) and bacterial biomass carbon (BBC) from 34 NEON sites. The distribution of FBC, BBC, and FBC: BBC (F:B) ratio was well simulated across sites, with variations in 99% (P < 0.001), 97% (P < 0.001), and 99% (P < 0.001) being explained by the CLM‐Microbe model, respectively. We found stronger biogeographic patterns of FBC relative to BBC across the United States. Fungal and bacterial turnover rates showed similar trends along latitude. However, latitudinal trends of their component fluxes (carbon assimilation, respiration, and necromass production) were distinct between bacteria and fungi, with those latitudinal trends following inverse unimodal patterns for fungi and showing exponential declining responses for bacteria. Carbon assimilation was dominated by vegetation productivity, and respiration was dominated by mean annual temperature for bacteria and fungi. The dominant factor for their necromass production differs, with edaphic factors controlling fungal and mean annual temperature controlling bacterial processes. The understanding of fungal and bacterial macroecology is an important step toward linking microbial metabolism and soil biogeochemical processes. Distinct fungal and bacterial macroecology contributes to the microbial ecology, particularly on microbial community structure and its association with ecosystem carbon cycling across space.more » « less
- 
            Abstract. Extreme drought events in Amazon forests are expected to become more frequent and more intense with climate change, threatening ecosystem function and carbon balance. Yet large uncertainties exist on the resilience of this ecosystem to drought. A better quantification of tree hydraulics and mortality processes is needed to anticipate future drought effects on Amazon forests. Most state-of-the-art dynamic global vegetation models are relatively poor in their mechanistic description of these complex processes. Here, we implement a mechanistic plant hydraulic module within the ORCHIDEE-CAN-NHA r7236 land surface model to simulate the percentage loss of conductance (PLC) and changes in water storage among organs via a representation of the water potentials and vertical water flows along the continuum from soil to roots, stems and leaves. The model was evaluated against observed seasonal variability in stand-scale sap flow, soil moisture and productivity under both control and drought setups at the Caxiuanã throughfall exclusion field experiment in eastern Amazonia between 2001 and 2008. A relationship between PLC and tree mortality is built in the model from two empirical parameters, the cumulated duration of drought exposure that triggers mortality, and the mortality fraction in each day exceeding the exposure. Our model captures the large biomass drop in the year 2005 observed 4 years after throughfall reduction, and produces comparable annual tree mortality rates with observation over the study period. Our hydraulic architecture module provides promising avenues for future research in assimilating experimental data to parameterize mortality due to drought-induced xylem dysfunction. We also highlight that species-based (isohydric or anisohydric) hydraulic traits should be further tested to generalize the model performance in predicting the drought risks.more » « less
- 
            Drylands cover ca. 40% of the land surface and are hypothesised to play a major role in the global carbon cycle, controlling both long-term trends and interannual variation. These insights originate from land surface models (LSMs) that have not been extensively calibrated and evaluated for water-limited ecosystems. We need to learn more about dryland carbon dynamics, particularly as the transitory response and rapid turnover rates of semi-arid systems may limit their function as a carbon sink over multi-decadal scales. We quantified aboveground biomass carbon (AGC; inferred from SMOS L-band vegetation optical depth) and gross primary productivity (GPP; from PML-v2 inferred from MODIS observations) and tested their spatial and temporal correspondence with estimates from the TRENDY ensemble of LSMs. We found strong correspondence in GPP between LSMs and PML-v2 both in spatial patterns (Pearson’s r = 0.9 for TRENDY-mean) and in inter-annual variability, but not in trends. Conversely, for AGC we found lesser correspondence in space (Pearson’s r = 0.75 for TRENDY-mean, strong biases for individual models) and in the magnitude of inter-annual variability compared to satellite retrievals. These disagreements likely arise from limited representation of ecosystem responses to plant water availability, fire, and photodegradation that drive dryland carbon dynamics. We assessed inter-model agreement and drivers of long-term change in carbon stocks over centennial timescales. This analysis suggested that the simulated trend of increasing carbon stocks in drylands is in soils and primarily driven by increased productivity due to CO 2 enrichment. However, there is limited empirical evidence of this 50-year sink in dryland soils. Our findings highlight important uncertainties in simulations of dryland ecosystems by current LSMs, suggesting a need for continued model refinements and for greater caution when interpreting LSM estimates with regards to current and future carbon dynamics in drylands and by extension the global carbon cycle.more » « less
- 
            Abstract. Understanding and quantifying the global methane (CH4) budgetis important for assessing realistic pathways to mitigate climate change.Atmospheric emissions and concentrations of CH4 continue to increase,making CH4 the second most important human-influenced greenhouse gas interms of climate forcing, after carbon dioxide (CO2). The relativeimportance of CH4 compared to CO2 depends on its shorteratmospheric lifetime, stronger warming potential, and variations inatmospheric growth rate over the past decade, the causes of which are stilldebated. Two major challenges in reducing uncertainties in the atmosphericgrowth rate arise from the variety of geographically overlapping CH4sources and from the destruction of CH4 by short-lived hydroxylradicals (OH). To address these challenges, we have established aconsortium of multidisciplinary scientists under the umbrella of the GlobalCarbon Project to synthesize and stimulate new research aimed at improvingand regularly updating the global methane budget. Following Saunois et al. (2016), we present here the second version of the living review paperdedicated to the decadal methane budget, integrating results of top-downstudies (atmospheric observations within an atmospheric inverse-modellingframework) and bottom-up estimates (including process-based models forestimating land surface emissions and atmospheric chemistry, inventories ofanthropogenic emissions, and data-driven extrapolations). For the 2008–2017 decade, global methane emissions are estimated byatmospheric inversions (a top-down approach) to be 576 Tg CH4 yr−1 (range 550–594, corresponding to the minimum and maximumestimates of the model ensemble). Of this total, 359 Tg CH4 yr−1 or∼ 60 % is attributed to anthropogenic sources, that isemissions caused by direct human activity (i.e. anthropogenic emissions; range 336–376 Tg CH4 yr−1 or 50 %–65 %). The mean annual total emission for the new decade (2008–2017) is29 Tg CH4 yr−1 larger than our estimate for the previous decade (2000–2009),and 24 Tg CH4 yr−1 larger than the one reported in the previousbudget for 2003–2012 (Saunois et al., 2016). Since 2012, global CH4emissions have been tracking the warmest scenarios assessed by theIntergovernmental Panel on Climate Change. Bottom-up methods suggest almost30 % larger global emissions (737 Tg CH4 yr−1, range 594–881)than top-down inversion methods. Indeed, bottom-up estimates for naturalsources such as natural wetlands, other inland water systems, and geologicalsources are higher than top-down estimates. The atmospheric constraints onthe top-down budget suggest that at least some of these bottom-up emissionsare overestimated. The latitudinal distribution of atmosphericobservation-based emissions indicates a predominance of tropical emissions(∼ 65 % of the global budget, < 30∘ N)compared to mid-latitudes (∼ 30 %, 30–60∘ N)and high northern latitudes (∼ 4 %, 60–90∘ N). The most important source of uncertainty in the methanebudget is attributable to natural emissions, especially those from wetlandsand other inland waters. Some of our global source estimates are smaller than those in previouslypublished budgets (Saunois et al., 2016; Kirschke et al., 2013). In particular wetland emissions are about 35 Tg CH4 yr−1 lower due toimproved partition wetlands and other inland waters. Emissions fromgeological sources and wild animals are also found to be smaller by 7 Tg CH4 yr−1 by 8 Tg CH4 yr−1, respectively. However, the overalldiscrepancy between bottom-up and top-down estimates has been reduced byonly 5 % compared to Saunois et al. (2016), due to a higher estimate of emissions from inland waters, highlighting the need for more detailed research on emissions factors. Priorities for improving the methanebudget include (i) a global, high-resolution map of water-saturated soilsand inundated areas emitting methane based on a robust classification ofdifferent types of emitting habitats; (ii) further development ofprocess-based models for inland-water emissions; (iii) intensification ofmethane observations at local scales (e.g., FLUXNET-CH4 measurements)and urban-scale monitoring to constrain bottom-up land surface models, andat regional scales (surface networks and satellites) to constrainatmospheric inversions; (iv) improvements of transport models and therepresentation of photochemical sinks in top-down inversions; and (v) development of a 3D variational inversion system using isotopic and/orco-emitted species such as ethane to improve source partitioning. The data presented here can be downloaded fromhttps://doi.org/10.18160/GCP-CH4-2019 (Saunois et al., 2020) and from theGlobal Carbon Project.more » « less
- 
            Abstract. Accurate assessment of anthropogenic carbon dioxide(CO2) emissions and their redistribution among the atmosphere,ocean, and terrestrial biosphere – the “global carbon budget” – isimportant to better understand the global carbon cycle, support thedevelopment of climate policies, and project future climate change. Here wedescribe data sets and methodology to quantify the five major components ofthe global carbon budget and their uncertainties. Fossil CO2emissions (EFF) are based on energy statistics and cementproduction data, while emissions from land use and land-use change (ELUC),mainly deforestation, are based on land use and land-use change data andbookkeeping models. Atmospheric CO2 concentration is measureddirectly and its growth rate (GATM) is computed from the annualchanges in concentration. The ocean CO2 sink (SOCEAN)and terrestrial CO2 sink (SLAND) are estimated withglobal process models constrained by observations. The resulting carbonbudget imbalance (BIM), the difference between the estimatedtotal emissions and the estimated changes in the atmosphere, ocean, andterrestrial biosphere, is a measure of imperfect data and understanding ofthe contemporary carbon cycle. All uncertainties are reported as ±1σ. For the last decade available (2008–2017), EFF was9.4±0.5 GtC yr−1, ELUC 1.5±0.7 GtC yr−1, GATM 4.7±0.02 GtC yr−1,SOCEAN 2.4±0.5 GtC yr−1, and SLAND 3.2±0.8 GtC yr−1, with a budget imbalance BIM of0.5 GtC yr−1 indicating overestimated emissions and/or underestimatedsinks. For the year 2017 alone, the growth in EFF was about 1.6 %and emissions increased to 9.9±0.5 GtC yr−1. Also for 2017,ELUC was 1.4±0.7 GtC yr−1, GATM was 4.6±0.2 GtC yr−1, SOCEAN was 2.5±0.5 GtC yr−1, and SLAND was 3.8±0.8 GtC yr−1,with a BIM of 0.3 GtC. The global atmosphericCO2 concentration reached 405.0±0.1 ppm averaged over 2017.For 2018, preliminary data for the first 6–9 months indicate a renewedgrowth in EFF of +2.7 % (range of 1.8 % to 3.7 %) basedon national emission projections for China, the US, the EU, and India andprojections of gross domestic product corrected for recent changes in thecarbon intensity of the economy for the rest of the world. The analysispresented here shows that the mean and trend in the five components of theglobal carbon budget are consistently estimated over the period of 1959–2017,but discrepancies of up to 1 GtC yr−1 persist for the representationof semi-decadal variability in CO2 fluxes. A detailed comparisonamong individual estimates and the introduction of a broad range ofobservations show (1) no consensus in the mean and trend in land-use changeemissions, (2) a persistent low agreement among the different methods onthe magnitude of the land CO2 flux in the northern extra-tropics,and (3) an apparent underestimation of the CO2 variability by oceanmodels, originating outside the tropics. This living data update documentschanges in the methods and data sets used in this new global carbon budgetand the progress in understanding the global carbon cycle compared withprevious publications of this data set (Le Quéré et al., 2018, 2016,2015a, b, 2014, 2013). All results presented here can be downloaded fromhttps://doi.org/10.18160/GCP-2018.more » « less
- 
            Abstract. Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the global carbon budget – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. CO2 emissions from fossil fuels and industry (EFF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (ELUC), mainly deforestation, are based on land-cover change data and bookkeeping models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) and terrestrial CO2 sink (SLAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the last decade available (2007–2016), EFF was 9.4 ± 0.5 GtC yr−1, ELUC 1.3 ± 0.7 GtC yr−1, GATM 4.7 ± 0.1 GtC yr−1, SOCEAN 2.4 ± 0.5 GtC yr−1, and SLAND 3.0 ± 0.8 GtC yr−1, with a budget imbalance BIM of 0.6 GtC yr−1 indicating overestimated emissions and/or underestimated sinks. For year 2016 alone, the growth in EFF was approximately zero and emissions remained at 9.9 ± 0.5 GtC yr−1. Also for 2016, ELUC was 1.3 ± 0.7 GtC yr−1, GATM was 6.1 ± 0.2 GtC yr−1, SOCEAN was 2.6 ± 0.5 GtC yr−1, and SLAND was 2.7 ± 1.0 GtC yr−1, with a small BIM of −0.3 GtC. GATM continued to be higher in 2016 compared to the past decade (2007–2016), reflecting in part the high fossil emissions and the small SLAND consistent with El Niño conditions. The global atmospheric CO2 concentration reached 402.8 ± 0.1 ppm averaged over 2016. For 2017, preliminary data for the first 6–9 months indicate a renewed growth in EFF of +2.0 % (range of 0.8 to 3.0 %) based on national emissions projections for China, USA, and India, and projections of gross domestic product (GDP) corrected for recent changes in the carbon intensity of the economy for the rest of the world. This living data update documents changes in the methods and data sets used in this new global carbon budget compared with previous publications of this data set (Le Quéré et al., 2016, 2015b, a, 2014, 2013). All results presented here can be downloaded from https://doi.org/10.18160/GCP-2017 (GCP, 2017).more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
